Short-Range Proximity Effect Correction for EUV Mask Writing Hiroyoshi Tanabe, Ginga Yoshizawa Intel KK Taichi Ogase, Yuichi Inazuki, Tsukasa Abe, Naoya Hayashi Dai Nippon Printing Co. Ltd. #### Introduction EUV mask film stack is much thicker than photomask film stack Heavier metals (Ta, Mo) scatter more electrons ### **Monte Carlo Simulation (1)** ### **Monte Carlo Simulation (2)** Absorbed energies by short-range backward scattering is ~25% of the energies by long-range backward scattering ### **Proximity Effect Correction Methods** - 1. Dose modulation during EB writing - Conventional method - Calculation grid size is limited by hardware - 2. Mask biasing - EB writer friendly ([1] Kamikubo et al., BACUS 2010) - Difficult to separate backscattering from etch/dev loadings - 3. Dose assignment before EB writing - Known as shot-rank method - Very short-range forward scattering can be incorporated ([2] Tsunoda et al., BACUS 2010) We select the shot-rank method in this paper #### **Experimental Setup** Substrate: Qz •Film structure: Shown in P. 2 •Resist: Posi CAR •EB writer: 50 keV VSB Etcher: ICP-RIE •PEC software: Ref. [2] Number of shot ranks: 64 •PEC parameters: Forward scattering range σ_F : 30 nm, fixed Long backscattering range σ_L : variable Long backscattering strength η_L : variable Short backscattering range σ_S : variable Short backscattering strength η_S: variable # **Proximity Test Pattern** - •We measured the CDs of 100 nm space adjacent to the w= 50 μ m and 1 μ m area - •Influence of the long-range backscattering is small when w=1 μm # **Proximity Effect** σ_L 10 μm η_L 0.35 Long-range PEC only Both long-range and short-range backscattering effects were successfully corrected # **Short Backscattering Range** σ_L 10 μm η_L 0.35 σ_S 0.45 μm η_S 0.1 σ_L 10 μ m η_L 0.35 σ_S 0.9 μ m η_S 0.1 σ_L 10 μm η_L 0.35 σ_S 1.8 μm η_S 0.1 - •Simulation (threshold model) assumes σ_S =0.9 μ m - •Experimental data and simulation results are well matched. The range of short backscattering is $\sim 1 \mu m$. # **Short-range Backscattering Effect on Linearity** Short-range backscattering intensity depends on CD # **Linearity** σ_L 10 μ m η_L 0.35 Long-range PEC only σ_L 10 μ m η_L 0.4 Long-range PEC only σ_{L} 10 μm η_{L} 0.35 σ_{S} 0.9 μm η_{S} 0.1 Linearity becomes better by including short-range PEC ### **Summary** - Short-range electron backscattering causes large effects on EUV mask CD shift - Shot-rank method was used for the proximity effect correction of short-range backscattering - Proximity effects were successfully corrected by including the short-range PEC - •The range of the short-range backscattering is $\sim 1 \mu m$ - •Short-range backscattering affects to the mask linearity. It was improved by including the short-range PEC.